GCE

Mathematics A

H240/01: Pure Mathematics

Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Text Instructions

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \mathbf{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0,1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
	Meaning
Other abbreviations in	
mark scheme	Mark for explaining a result or establishing a given result
E1	Mark dependent on a previous mark, indicated by *
dep*	Correct answer only
cao	Or equivalent
oe	Rounded or truncated
rot	Seen or implied
soi	Without wrong working
www	Answer given
AG	Anything which rounds to
awrt	By Calculator
BC	This question included the instruction: In this question you must show detailed reasoning.
DR	

Subject-specific Marking Instructions for A Level Mathematics A

Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
If you are in any doubt whatsoever you should contact your Team Leader.
c The following types of marks are available.

M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.
E
Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given
e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
$\mathrm{f} \quad$ We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. When a value is not given in the paper accept any answer that agrees with the correct value to 3 s.f. unless the question specifically asks for another level of accuracy. Follow through should be used so that only one mark is lost for each distinct accuracy error.

Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
$\mathrm{h} \quad$ For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.

If in any case the scheme operates with considerable unfairness consult your Team Leader.

Question			Answer	Marks	AO	Guidance	
2	(a)	(i)	Show A in third quadrant, with length of 8 and relevant angle marked on given axes	B1 [1]	1.2	Allow any correct angle	Condone A being located by correct \mathbf{i} and \mathbf{j} components instead of length and angle could be stated as a coordinate or values marked on the axes
		(ii)	$\begin{aligned} & x=8 \cos 240^{\circ}=-4 \\ & y=8 \sin 240^{\circ}=-4 \sqrt{3} \end{aligned}$ A is $-4 \mathbf{i}-4 \sqrt{3} \mathbf{j}$	M1 A1 A1 [3]	1.1a 1.1 1.1	Attempt both components from magnitude of 8 and an angle Obtain one correct component Obtain fully correct position vector	Could use 60° (no need to consider whether positive or negative for this mark) Allow M1 for $8 \cos \theta$ and $8 \sin \theta$ attempted Condone a value for θ that may not be consistent with their diagram Max of M1 only, if A incorrect on diagram Condone eg $x=-4$ for $-4 \mathbf{i}$ Allow 6.93, or better, for $4 \sqrt{3}$ A0 if coordinate or column vector
	(b)		$\text { area }=0.5 \times 8 \times 6 \times \sin 120^{\circ}$ $=12 \sqrt{3}$	M1 A1 [2]	3.1a 1.1	Attempt area of triangle, using correct formula Obtain $12 \sqrt{3}$	M0 if 240° used Allow plausible angle ie $30^{\circ}, 60^{\circ}, 120^{\circ}, 150^{\circ}$ Allow other incorrect angles as long as explicit on their diagram Allow multi-step methods as long as fully correct method Must be exact www eg M1A0 for $12 \sqrt{3}$ from A in second quadrant M1A0 for $12 \sqrt{3}$ from using 60° without justification that $\sin 120^{\circ}=\sin 60^{\circ}$

Question	Answer	Marks	AO		Guidance
(c)	$6 \mathbf{i}-(-4 \mathbf{i}-4 \sqrt{3} \mathbf{j})$	M1	3.1a	Attempt 6i- (their OA)	Allow BOD for $6 \mathbf{i}--4 \mathbf{i}-4 \sqrt{3} \mathbf{j}$, even if final answer is not commensurate with 'invisible brackets'
	C is $10 \mathbf{i}+4 \sqrt{3} \mathbf{j}$	A1 [2]	1.1	Obtain $10 \mathbf{i}+4 \sqrt{3} \mathbf{j}$	Allow 6.93 , or better, for $4 \sqrt{3}$ SC B1 for $2 \mathbf{i}-4 \sqrt{3} \mathbf{j}$ or $-10 \mathbf{i}-4 \sqrt{3} \mathbf{j}$ ie a valid parallelogram having misinterpreted $O A B C$

Question		Answer	Marks	AO	Guidance	
3	(a)	$k=3$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	2.2a	State 3	B0 for $k \geq 3$ Allow B1 for $x \geq 3$, as this implies $k=3$
	(b)	$f(5)=-13$ -13 is not in domain so $f(-13)$, and hence $\mathrm{ff}(5)$, is not defined	M1 A1 [2]	1.2 1.1	Attempt f (5) Correct conclusion	Could be implied by -13 Could be part of algebraic attempt at $\mathrm{ff}(x)$, with $x=5$ used, but does not need to be evaluated for M1 Allow equiv, such as 'not possible' SC Allow A1 for $\mathrm{f}(-13)=239$
	(c)	$\begin{aligned} & (x-3)^{2}-17=x \\ & x^{2}-7 x-8=0 \\ & x=8, x=-1 \end{aligned}$ Obtain at least $x=8$ $x=-1$ is not valid as $x \geq 3$, so $x=8$	M1 A1 A1 [3]	1.1a 1.1 2.3	Equate and attempt to solve If second root is given, it must also be correct Obtain $x=8$ only, having discarded $x=-1$, with a reason such as 'not in the domain' or 'less than 3'	BC Equate and produce at least one root, not necessarily correct for their equation Could be implied by sight of 8 , or 8 and -1 , even if equation not seen www, eg $x=8$ given as only root from $(x-8)(x-1)$ is M1A0 Must be using $k=3$; if referring to 'less than k ' then 3 must have been seen in part (a) Must see some indication that the other root would have been -1 , eg a factor of $(x+1)$ or a numerical quadratic formula not fully evaluated
	(d)	$\mathrm{f}(x)$ and $\mathrm{f}^{-1}(x)$ are reflections in the line $y=x$ so the point of intersection must be on $y=x$	B1 [1]	1.2	Correct description	Sufficient to see $\mathrm{f}(x)$ and $\mathrm{f}^{-1}(x)$ intersect on $y=x$ or reference to reflections in $y=x$

Question		Answer	Marks	AO	Guidance	
4	(a)	Identify AP with $a=16000$ and $\begin{aligned} & d=1200 \\ & u_{10}=16000+9 \times 1200=£ 26,800 \end{aligned}$	B1 B1 [2]	3.1b	Seen or implied Obtain £26,800	Could be implied by use in u_{n}, even if $n \neq 10$, or by use in S_{n} Units required Answer only of 26,800 would be B1B0, as AP implied but no units
	(b)	$S_{N}=0.5 N(32000+(N-1) 1200)$	M1	3.4	Attempt S_{N} of AP, with their a and d	FT their a and d from part (a)
		$600 N^{2}+15400 N-500000=0$	A1	3.1a	Equate sum of AP to 500000 and rearrange to any correct 3 term quadratic	Allow $=$, or any inequality sign
		$N=18.8 \quad($ and possibly $N=-44.4)$	A1	1.1	At least correct positive root soi	BC Condone 18.7 (ie truncated not rounded) Sight of 19 implies A1, even if 18.8 never seen If other root given then must be correct
		19 years	B1FT	3.2a	Conclude with 19 (years) FT on their positive non-integer root being rounded up	Allow just 19, rather than 19 years B 0 for ≥ 19, or equivalent in words the FT is just on their incorrect root (which must have come from an attempt at the sum of an AP, but could follow M0), and not any other aspect of the question Must see a non-integer value first to get the B1FT
			[4]			

Question		Answer	$\begin{gathered} \hline \text { Marks } \\ \hline \text { M1 }^{*} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AO } \\ \hline 1.1 \mathrm{a} \\ \hline \end{array}$	Guidance	
5	(a)	$3 x^{2}-6 x y-3 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$			Attempt implicit differentiation	Either of the two $\frac{\mathrm{d} y}{\mathrm{~d} x}$ terms correct, allowing sign errors
			A1	2.1	Correct derivative www	Condone no ' $=0$ ' on RHS Condone $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ldots$ as long as not used
		$3 x^{2}-6 x y+\left(2 y-3 x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0$ OR $-3 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=6 x y-3 x^{2}$	M1d*	1.1a	Attempt to make $\frac{\mathrm{dy}}{\mathrm{d} x}$ the subject	Either collect like terms on each side or take out a common factor of $\frac{d y}{d x}$ Must have two terms involving $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and two terms without $\frac{\mathrm{d} y}{\mathrm{~d} x}$
		$\begin{aligned} & \left(2 y-3 x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=6 x y-3 x^{2} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{6 x y-3 x^{2}}{2 y-3 x^{2}} \quad \text { A.G. } \end{aligned}$	A1	2.1	Obtain correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$	Obtain given answer having collected like terms on either side and taken out a common factor (possibly with both steps being done in one go)
			[4]			
	(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=9$	B1	1.1	Obtain gradient of 9	Could be implied by $-\frac{1}{9}$
		$m^{\prime}=-\frac{1}{9}$	B1FT	1.1	Correct gradient of normal	FT their m
		$y-2=-\frac{1}{9}(x-1)$	M1	1.1a	Attempt equation of normal	Using (1, 2) and their normal gradient (M0 if using gradient of tangent) Gradient must be numerical
		$x+9 y=19$	A1 [4]	1.1	Obtain correct three term equation	Any correct equiv

Question		Answer		Marks	AO	

Question		Answer	Marks	AO	Guidance	
8	(a)	$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} t}=k \sqrt{x} \\ & -0.0032=k \sqrt{0.64} \text { so } k=-0.004 \\ & \text { hence } \frac{\mathrm{d} x}{\mathrm{~d} t}=-0.004 \sqrt{x} \quad \text { A.G. } \end{aligned}$	B1* B1d* [2]	3.3 3.3	Set up a correct differential equation Obtain correct differential equation www	Allow - k Or $k=0.004$ from $-k$ Must use -0.0032 when finding k B0 if $k=0.004$, even if then comment about 'decreasing' and sign changed
	(b)	$\begin{aligned} & \int-0.004 \mathrm{~d} t=\int x^{-\frac{1}{2}} \mathrm{~d} x \\ & -0.004 t=2 x^{\frac{1}{2}}+c \\ & -0.004 \times 100=2 \sqrt{0.64}+c \\ & c=-2 \\ & 2 \sqrt{x}=2-0.004 t \\ & x=(1-0.002 t)^{2} \end{aligned}$	M1* A1 M1d* A1 [4]	1.1a 1.1 3.4 1.1	Separate variables and attempt integration Correct integral - could still be in terms of k Use $t=100, x=0.64$ to find c Correct equation	Condone $\mathrm{d} x, \mathrm{~d} t$ and/or integral sign not being explicit Could instead invert both sides of equation Increase by 1 in both of their powers Condone no $+c$ Any correct equation eg $t=-500 \sqrt{x}+\mathrm{c}$ Substitute given values into their general solution and attempt c NB check method carefully for their equation and the position of their c Any equiv as long as x in terms of t ISW if correct equation subsequently spoilt
	(c)	when $x=0, t=500$ so tank will be empty after 500 seconds	M1 A1 [2]	1.1 3.4	Use $x=0$ to attempt a value for t Units needed	Must be using $x=0$ in their particular solution, with a non-zero value for c Must come from using a correct equation Allow 8 mins 20 secs, 8.3 mins or 8.33 mins

Question		Answer	Marks	AO	Guidance	
9	(a)	$R^{2}=9+49$ $R \cos \alpha=3, R \sin \alpha=7$ hence $\tan \alpha=\frac{7}{3}$ $\sqrt{58} \cos (3 x-1.17)$	M1 M1 A1 [3]	1.1a 1.1a 1.1	Attempt correct process to find R Attempt correct process to find $\tan \alpha$ (or equiv with $\sin \alpha$ or $\cos \alpha$) Obtain $\sqrt{58} \cos (3 x-1.17)$	M0 for $\tan \alpha=\frac{3}{7}$ Allow M1 even if then evaluated in degrees Allow $R=7.62$, or better α must be in radians If R and α are correct then no need to see them substituted back into the expression
	(b)	Stretch in the y direction by sf $\sqrt{58}$	B1FT	1.1	Follow through their R (numerical or just ' R ') Given at any point in the sequence of transformations	Allow BOD if no 'scale factor' or equiv ie B1 for 'stretch in y-direction by $\sqrt{58}$, Must be 'parallel to y-axis', 'in y direction', ' x-axis invariant' or equiv, so B0 for 'along / in / on / to y-axis', 'parallel to y ' etc
		Translation in the x direction by 1.17 Stretch in the x direction by sf $\frac{1}{3}$	M1	3.1a	Translation by \pm their α and stretch by (sf) 3 or $\frac{1}{3}$, in either order, both in the x direction	Allow informal language for this mark eg 'shift', 'move', 'compression', 'squash' Allow translation by $\pm \frac{1}{3}$ (their α)
			A1FT	1.1	Translation by their α (numerical, inc in degrees, or just ' α ')	soi to be in the positive x-direction Must use correct language (see B1FT)
			A1 [4]	2.5	Stretch by sf $\frac{1}{3}$	A0A1 is possible For A1A1 stretch must follow translation, unless using $\frac{1}{3}$ (their α) Must use correct language (see B1FT) Must mention 'scale factor', 'factor' or 'sf'

Question		Answer	Marks	AO		Guidance
	(c)	greatest value is $\sqrt{58}$ when $x=0.389$	B1FT B1 [2]	3.1a 1.1	FT their R Obtain 0.389	R must be numerical Allow no method shown Must be in radians 'Determine' so some method needed eg $3 x-1.17=0$ oe (minimum of $x=\frac{1.17}{3}$) Allow 0.39
	(d)	least value is $-\sqrt{ } 58$ when $x=1.44$	B1FT B1 [2]	3.1a 1.1	FT their R Obtain 1.44	R must be numerical Allow no method shown Must be in radians 'Determine' so some method needed eg $3 x-1.17=\pi$, or equiv
10	(a)	$\frac{1}{2} \times 6^{2} \times \theta$ $\frac{1}{2} \times 6^{2} \times(\theta-\sin \theta)=7.2$ $\begin{aligned} & \theta-\sin \theta=\frac{7.2}{18}=0.4 \\ & \theta=0.4+\sin \theta \quad \mathbf{A G} \end{aligned}$	B1 M1 A1 [3]	1.2 1.1 2.1	Correct area of sector soi Attempt area of segment and equate to 7.2 Rearrange to obtain given answer	Could be part of attempt at area of segment Allow unsimplified, inc $\pi \times 6^{2} \times \frac{\theta}{2 \pi}$ Any equivalent method eg sector area $=$ triangle area +7.2 Correct formula for area of a triangle Area of sector must be $\left(\frac{1}{2}\right) \times 6^{2} \times \theta$ At least one line of working needed after equating to 7.2

Questio	Answer	Marks	AO		Guidance
(b)	$\mathrm{F}^{\prime}(1.2)=\cos (1.2)=0.362$ $\left\|F^{\prime}(1.2)\right\|<1$ so iteration will converge	B1* B1d* [2]	$\begin{aligned} & 1.1 \\ & 2.4 \end{aligned}$	Correct $\mathrm{F}^{\prime}(1.2)$ Identify correct condition	Allow 0.36 Must be $\left\|\mathrm{F}^{\prime}(1.2)\right\|<1$ or $-1<\mathrm{F}^{\prime}(1.2)<1$ oe $\mathrm{F}^{\prime}(1.2)<1$ is B 0 as condition is incomplete, but condone $0<\mathrm{F}^{\prime}(1.2)<1$ oe in words
(c)	$\begin{aligned} & 1.3320 \\ & 1.3716,1.3802,1.3819,1.3822, \\ & 1.3823 \ldots \\ & \text { hence } \theta=1.382 \end{aligned}$	B1 M1 A1 [3]	1.1a 1.1 2.2a	Correct first iterate Attempt correct process Obtain $\theta=1.382$ (must be 4 sf)	Allow 1.332 At least 3 iterations in total Must be given to at least 4 sf Following at least 2 iterations that are 1.382 to 4 sf A 0 if given as $\theta_{k}=\ldots$ Allow recovery from an incorrect interim value (but B0M1A1 if first iterate is wrong)
(d)	$\begin{aligned} & 1.3815-0.4-\sin 1.3815=-0.000637 \\ & 1.3825-0.4-\sin 1.3825=0.000175 \end{aligned}$ $\mathrm{f}(1.3815)<0$ and $\mathrm{f}(1.3825)>0$ by sign change $1.3815<\theta<1.3825$ so must 1.382 correct to 4 sf	M1 A1 B1 [3]	2.1 2.1 2.4	Attempt relevant values either side of their root, using relevant θ s Obtain both correct values Must refer to sign change	Allow other valid methods as long as they have one value either side of the root (1.382284...) and both round to 1.382 , to 4 sf Could use $\sin \theta+0.4=\theta$ and compare inequality signs For their θ values At least 1 sf Allow truncating not rounding Must be fully correct to award B1

Question		Answer	Marks	AO	Guidance	
11	(a)	$\begin{aligned} & \int 1 \cdot \ln (x-4) \mathrm{d} x \\ & \text { so } u=\ln (x-4) \text { and } v^{\prime}=1 \end{aligned}$	M1	1.1a	Attempt integration by parts, with correct parts	u and v^{\prime} correctly allocated and correct formula used M0 if $v=x-4$ from $v^{\prime}=1$
		$x \ln \|x-4\|-\int \frac{x}{x-4} \mathrm{~d} x$	A1	1.1	Correct expression	Allow brackets not modulus Allow $x \times \frac{1}{x-4}$, even if subsequently spoilt
		$\int \frac{x}{x-4} \mathrm{~d} x=\int 1+\frac{4}{x-4} \mathrm{~d} x$	M1	3.1a	Attempt to deal with improper fraction	Allow sign error ie $1-\frac{4}{x-4}$ Could use substitution of $u=x-4$ but must get as far as a proper fraction (ie $1 \pm 4 u^{-1}$) Do not need to actually integrate for M1
		$=x+4 \ln \|x-4\|$	A1	1.1	Correct integration of fraction	Allow brackets not modulus Using a substitution gives $x-4+4 \ln \|x-4\|$; must be in terms of x and not u for A1
		$\begin{aligned} & \int \ln (x-4) \mathrm{d} x \\ & =x \ln \|x-4\|-x-4 \ln \|x-4\|+c \\ & =(x-4) \ln \|x-4\|-x+c \text { A.G. } \end{aligned}$	A1	2.4	Show given answer with no errors seen	Modulus required in final answer, as well as $+c$ Can go from penultimate line in MS to given answer with no further detail needed Answer from using substitution will need to justify changing c eg $c+4$ is a constant hence c^{\prime} is also a constant $\mathbf{N B}$ differentiating given answer is $0 / 5$

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]: Oxford Cambridge and RSA Examinations
 is a Company Limited by Guarantee
 Registered in England
 Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
 Registered Company Number: 3484466
 OCR is an exempt Charity
 OCR (Oxford Cambridge and RSA Examinations)
 Head office
 Telephone: 01223552552
 Facsimile: 01223552553

